NAU Compost Monitoring Program

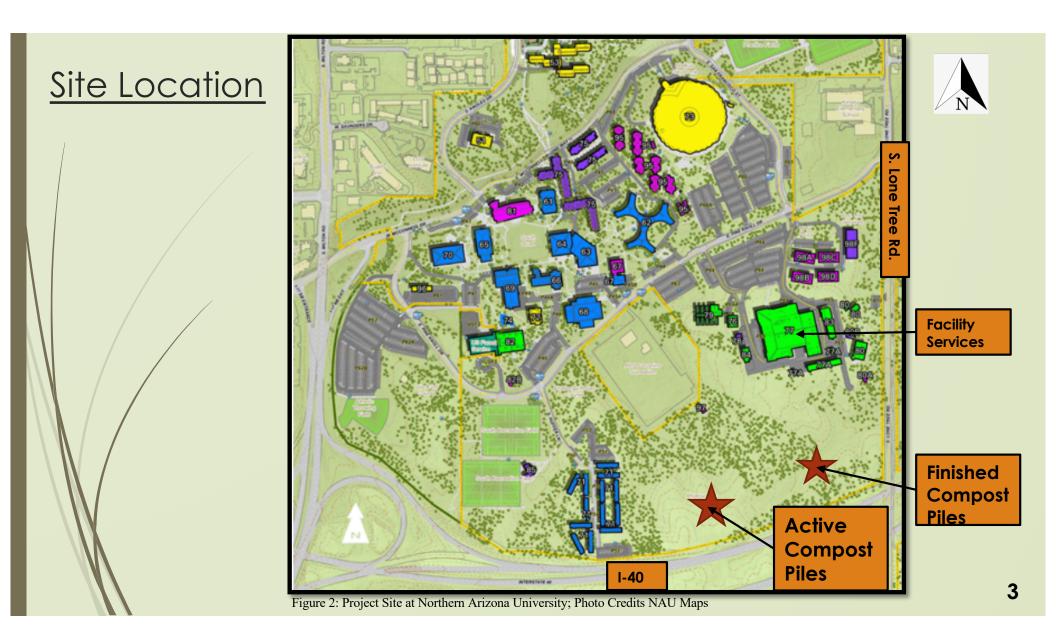
Northern Arizona University-CENE 486 Fall 2019 Presented by: Abdul Almehmadi

Scott Bearchell Sara Page

SAS Engineering

Background

Purpose:


- To create a comprehensive management plan for Northern Arizona University's (NAU) composting system.
- To determine if NAU can perform lab analysis inhouse.
- To compare external lab costs vs. in-house testing cost.

<u>Client:</u> Adam Bringhurst

Location: NAU Facilities

Figure 1: Finished compost; Photo by Abdul Almehmadi

Regulations

T	able 1: Regulations [2] [8]		
Parameters	Determination	Importance	
рН	6-7.5	Too Basic causes damage to plants.	
Ash Content	~50% ash weight	Higher shows mineralization (shows in older compost).	
Heavy Metals	Varies	Toxic substances that can harm human health.	
E. Coli	3 MPN/g dry weight compost	Toxic microbes that can harm human health.	
Nitrate/Nitrite	Below 100 PPM	Not enough nitrates indicates insufficient amount of oxygen; causing gaseous loss of nitrogen.	
Ammonia	100-550 PPM	Indicates why pH is high or low.	
Salmonella	4MPN/4g dry weight compost	Toxic microbes that can harm human health.	
C:N Ratio	Below 14 Ratio	Shows the rate of decomposition. Accurately depicts when compost reaches ripeness.	

Figure 3: Finished Compost Pile 1; Photo by: Sara Page

Work Plan

Sampling and Analysis Plan (SAP)

- Project Data Quality
- Field Methods and Procedures
- o / Disposal Methods

Health and Safety Plan (HASP)

- o Hazardous Assessment
- Training Requirements
- Personal Protective Equipment
- Emergency Response Procedures

NAU Compost Work Plan

Abdulrahman Almehmadi, Scott Bearchell, Sara Page Revision #1 August 29, 2019

> GI: Dr. Bridget Bero TA: Adam Bringhurst

Figure 4: Work Plan: Workplan Title Page

NORTHERN ARIZONA UNIVERSITY

Figure 5: Compost Pile Sampling 2; Photo by: Sara Page

Sampling

- Samples taken on 9/20/2019
- 4ft height sampling
- 3 piles = 3 samples
- 8 locations within a pile
- Gallon of sample per pile composited

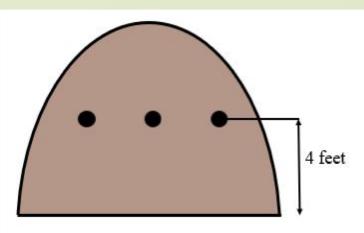


Figure 6: Compost Pile Side View; Created by: Sara Page

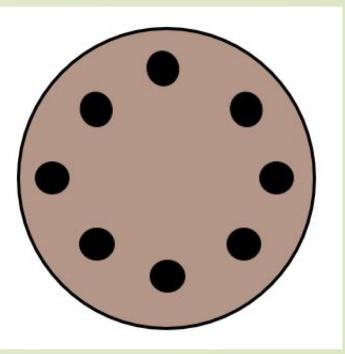


Figure 7: Compost Pile Top View; Created by: Sara Page

Temperature:

- Temperatures taken at different intervals
- Plateaus when temperature doesn't change even when mixed for a week.
- Temperatures plateaued.

Date:	10/14/2019	10/31/2019	11/24/2019	Temp. Avg.	Determination: <90° F [2]		
Pile			Ter	mperature ° F			
1.1	110	110	90				
1.2	128	112	106	112 ± 0	High		
1.3	118	122	112	112±9	High		
1. 4	113	106	114				
2.1	126	119	112				
2.2	126	120	117	119±8	High		
2.3	128	122	104	117±0	High		
2.4	127	122	108				
3.1	116	112	105				
3.2	116	108	98	108 ± 8	High		
3.3	118	111	100		l ligh		
3.4	113	110	90				

Table 2: Temperature

Analysis: pH

• Test Method for Examining Composting and Compost (TMECC) 4.11A

Table 3: 1	oH Results		
Sample	рН	Avg pH	Determination: between 6 -7.5 [2] [8]
1.1	6.89	6.79	
1.2	6.71	±0.09	Good
1.3	6.77	-0.09	
2.1	7.06	/ 07	
2.2	7.02	6.97 ±0.13	Good
2.3	6.82	10.13	
3.1	7.27	7.02	
3.2	7.20	7.23	Good
3.3	7.22	±0.04	

Figure 8: pH Samples on Shaker; Photo by: Abdul Almehmadi

Analysis: Ash Content

 Test Method Examination for Composting and Compost (TMECC) TMECC 3.02A

Table 4: Ash Results

Sample	Ash %	Ash % Avg	Determination: ~50% [8]
1.1	59%	54%	
1.2	45%	Good	Good
1.3	56%	±7%	
2.1	50%	E107	
2.2	49%	51%	Good
2.3	55%	±3%	
3.1	82%	0.207	
3.2	84%	83%	High
3.3	84%	±1%	

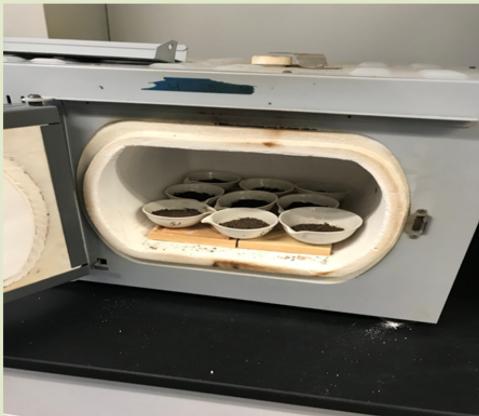


Figure 9: Ash sample in muffle furnace; photo by: Sara Page

Analysis: Heavy Metals

o Subcontracted out; Followed EPA 6200

Table 5: Heavy Metal Results

Metals	Pile Sample 1 Avg. (PPM)	Pile Sample 2 Avg. (PPM)	Pile Sample 3 Avg. (PPM)	Standard Deviation (PPM)	EPA Limit: [2] [8] (PPM)	Within Limit:
Arsenic	6.4	12.1	12.1	2.7	41	Good
Cadmium	< 10	< 10	< 10	7.2	39	Good
Copper	28.5	35.2	37.3	9.3	1500	Good
Chromium	<10	26.7	40.9	10.2	1200	Good
Lead	7.3	9.2	19.4	3.1	300	Good
Mercury	<5	<5	<5	5.9	17	Good
Nickel	<15	<15	32.3	16.0	420	Good
Zinc	120.1	116.4	120.7	8.0	2800	Good
Molybdenum	2.9	<1	< 1	2.9	75	Good
Selenium	ও	<3	ব	2.4	100	Good

<u>Analysis: E. Coli</u>

 HACH Method 8001 with modifications of adding 5 grams of compost and DI water into the vials

Table 6: E. Coli

Sample	E. Coli	Avg E. Coli	Determination: <3 MPN/g Compost	
1.1	0	Nana		
1.2	0	None	Good	
1.3	0	Detected		
2.1	0	Nana		
2.2	0	None	Good	
2.3	0	Detected		
3.1	0			
3.2	0	None	Good	
3.3	0	Detected		

Figure 10: *E.Coli*; Photo by Sara Page

Analysis: Nitrate/Nitrite

- o HACH Method 8039
- Had to be modified due to not having a lon Chromatograph
- o Slurry was created and utilized as liquid
- o Slurry was filtered twice for sampling

Table 7: Nitrates

	Sample	Nitrate (mg/L)	Nitrate Avg (mg/L)	Determination: >100 PPM [2] [8]
	1.1	5.1		
	1.2	6.7	6.8 ±1.7	Fail
N	1.3	8.5		
	2.1	12.5		
	2.2	15	13.6 ±1.3	Fail
	2.3	13.4		
	3.1	5.4		
	3.2	3.8	4.1 ±1.2	Fail
	3.3	3.1		

Figure 11: Nitrate; Photo by Abdul Almehmadi

Analysis: What Couldn't be Tested

Ammonia

- o TMECC 4.02C
- EnE labs were not equipped with a working Ion-Selective Electrode.



Figure 12: Ammonia; Photo by Abdul Almehmadi

Salmonella

- Test Method Examination for Composting And Compost TMECC 07.02A
- Could not test due to absence of a Stomacher.
- Stomacher is used in microbiology applications to extract and wash intact microbes into solution.

Figure 13: Salmonella; Stomacher 400 Circulator

C:N Ratio

- Test Method Examination for Composting And Compost TMECC 4.02-A and TMECC 4.02-C.
- Could not test due to absence of an Aluminum Heating Block for 500°C and a Sulfur/Carbon Determinator.
- These devices are used to test carbon through combustion.

Figure 14: *C:N Ratio*; Sulfur/Carbon Determinator

External Lab Source Results:

Parameter	Units	Pile 1 from SAS	Pile 1 from External Lab	% Error
Ash	%	54%	47.9%	11%
рН	N/A	6.8	7.77	14%
Nitrate	PPM	6.8	310	4459%
Arsenic	PPM	6.4	3.5	45%
Cadmium	PPM	<]	<]	0%
Copper	PPM	28.47	36	26%
Chromium	PPM	< 10	20	100%
Lead	PPM	7.3	5.4	26%
Mercury	PPM	<]	<]	0%
Nickel	PPM	< 10	15	50%
Zinc	PPM	120.10	100	17%
Molybdenum	PPM	2.915	1.7	42%
Selenium	PPM	<]	<1	0%

Table 8: External Lab Source Compared

Operations Analysis

Compost Components

Food

 Pre-consumer waste is gathered from The Hot Spot and The DüB Dining District, located on campus

Emulsifier and Dehydrator

 Post-consumer waste is processed using Somat products to produce an emulsified pulp that is then added to compost piles

Bulking Agents

- Tree trimmings and pine needles are donated from Arizona Public Service (APS) and local businesses.
- o Horse manure is donated from local stables
- Dirt is collected from various NAU Facility projects.

Figure 15: Somat, HYDRA-EXTRACTOR; Photo by Scott Bearchell

Figure 16: Emulsified post-consumer waste; Photo by Scott Bearchell

<u>Operations</u> <u>Analysis</u>

Composting

- 1 Week of dining waste is collected.
- Six 2 month old piles are created with the last pile being 12 months old.

Testing

 1 Sample every 2 months is sent to Soil Control Laboratory, in Watsonville, California for quality testing

Finish

- Compost is turned into an amended soil with 80% compost and 20% dirt.
- o Product is sold

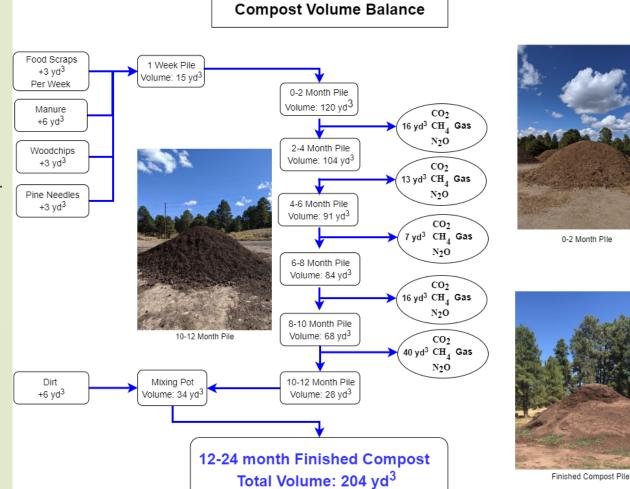


Figure 17: Volume Flow Balance; Created by Scott Bearchell

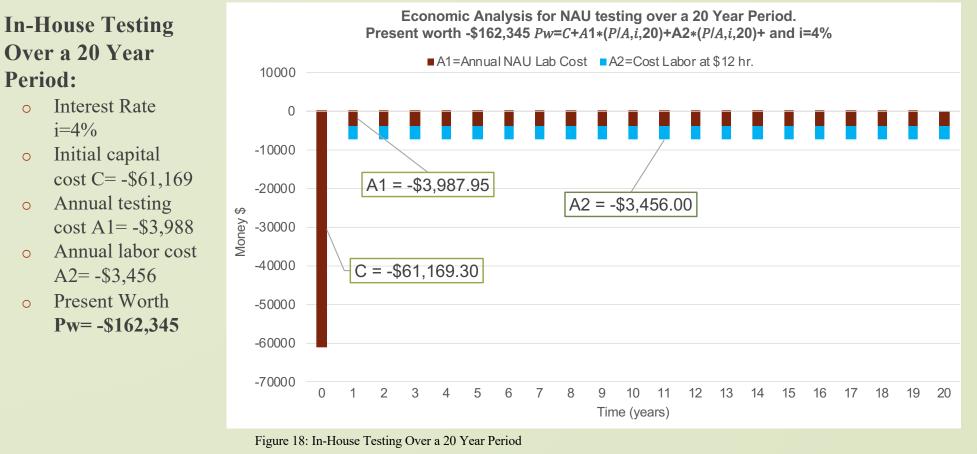
Economic Analysis: In-House Testing

Capital Cost at Year 0 for In-House:

- Calculates all cost of Bulk Materials and Equipment needed for each test.
- o Total capital cost is ~\$61K.

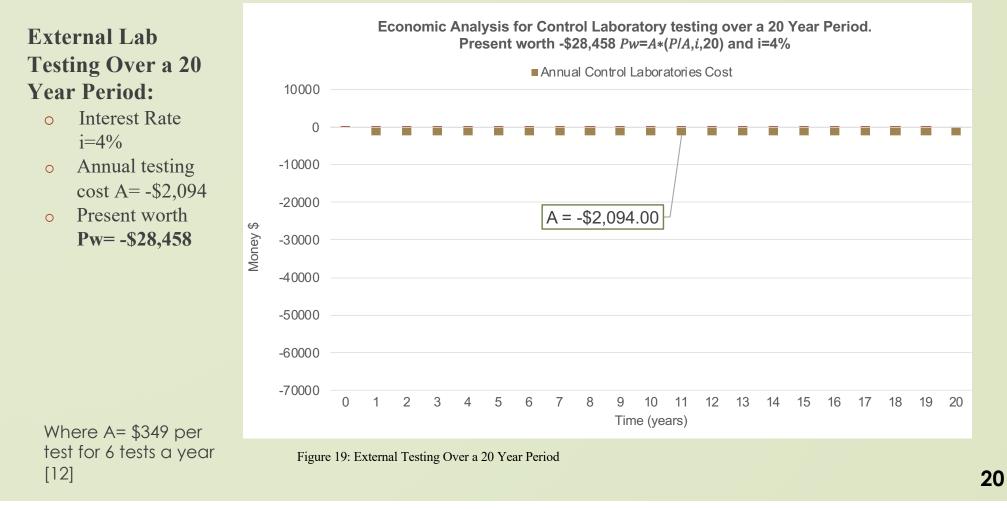
Ca	pital Cost at Year 0	
Method	Materials	Cost for Iter
	Aluminum Oxide, 25lbs	\$63.04
Organic Carbon TMECC	Sucrose, 500g	\$16.60
	CaCo3, 500g	\$10.75
	Kjeltabs Cu-3.5,Foss 1000pk	\$251.00
Nitrogen TMECC	Salicylic Acid, 1 lbs	\$9.67
	Sodium Thiosulfate, 4 lbs	\$20.39
	lactose broth, 1 kg	\$29.22
	Brilliant Green Bile Broth 500 g	\$79.00
	Idoine-lodide solution 1L 5mg	\$36.95
Salmonella TMECC	Tetrathionate broth 500 g	\$53.57
	Hektoen Enteric Agar, 500 g	\$149.50
	Selenite F broth 500g	\$74.30
	1-2 Test Kit, 48pk	\$114.20
Ammonia IMECC	deionized, ammonia-free water, 3500 mL	\$99.75
NItrate/Nitrite TMECC	deionized, ammonia-free water, 3500 mL	\$99.75
	Lauryl Tryptose broth tubes, Qty 15	\$32.75
E.Coli HACH	EC Medium with MUG, Qty 15	\$33.20
Method	Equipment	Cost \$/
Melliou	Equipment	Equipment
Organic Carbon TMECC	832 Series Sulfur/Carbon Determinator	\$35,000.00
Organic Carbon IMECC	Furnace	\$1,169.00
	Microwave	\$2,653.00
Nitrogen TMECC	Aluminum Heating Block. 500C	\$445.40
	Stomacher	\$5,606.50
Salmonella TMECC	Strainer bag, Qty 1	\$12.49
	pH meter	\$12.99
	Glass Electrode	\$50.70
pH TMECC	Stirring Rod	\$3.00
	Centrifuge Extraction Apparatus	\$1,312.00
	lon -Selective electrode	\$884.00
Ammonia TMECC	Manetic Stirrer	\$317.19
	Balance	\$148.00
Ash TMECC	Evap dish 525mL, Qty 1	\$136.00
	Dessicator Cabinets 24"x18"	\$131.00
otal Solids & Moisture Content TMECC	Drying oven	\$399.00
	Ion Chromatograph Dionex DX120	\$9,600.00
NItrate/Nitrite TMECC	Colorimeter AQ4000 Thermo Scientific	
		\$1,279.00
	Incubator	\$299.00
	Alcohol burner	\$7.99
E.Coli HACH	Incoulating loops	\$101.00
	Pipet 10 mL	\$197.00
	Pipete filler	\$116.40
Toto	Coliform tube rack	\$115.00
	YEAR 0	\$61,170

Table 9: Capital Cost At Year 0


Economic Analysis: In-House Testing

Annual Cost for In-House:

- Calculates all cost of single use materials needed.
- Tests one sample of compost every other month; 6 times a year.
- Total annual In-House cost is ~\$7.5K.


Annual Cost- Supplies & Labor						
Method	Materials	Pile 1- #Samples	Cost for Item	Cost/Test		
	Aluminum Oxide, 25lbs	1	\$63.04	\$0.01		
Organic Carbon TMECC	Sucrose, 500g	1	\$16.60	\$3.32		
IMLCC	CaCo3, 500g	1	\$10.75	\$2.69		
	Kjeltabs Cu-3.5,Foss 1000pk	1	\$251.00	\$0.25		
Nitrogen TMECC	Salicylic Acid, 1 lbs	1	\$9.67	\$0.01		
	Sodium Thiosulfate, 4 lbs	1	\$20.39	\$0.02		
	lactose broth, 1 kg	1	\$29.22	\$0.38		
	Brilliant Green Bile Broth 500 g	1	\$79.00	\$6.58		
	Idoine-Iodide solution 1L 5mg	1	\$36.95	\$0.37		
Salmonella	Tetrathionate broth 500 g	1	\$53.57	\$0.50		
TMECC	Hektoen Enteric Agar, 500 g	1	\$149.50	\$12.46		
	Selenite F broth 500g	1	\$74.30	\$6.19		
	1-2 Test Kit, 48pk	1	\$114.20	\$2.38		
Ammonia TMECC	deionized, ammonia-free water, 3500 mL	1	\$99.75	\$11.08		
NItrate/Nitrite TMECC	deionized, ammonia-free water, 3500 mL	1	\$99.75	\$11.08		
E.Coli HACH	Lauryl Tryptose broth tubes, Qty 15	1	\$32.75	\$3.64		
	EC Medium with MUG, Qty 15	1	\$33.20	\$3.69		
NAU Lab	\$100/day for 6 days	1	\$600.00	\$600.00		
NAU Lab Student Technicians	\$12/hour for 48 hours	1	\$576.00	\$576.00		
	Total In-House An	nual Cost				
	Annual Cost			\$7,444		
	Annual Cost			<u> </u>		

Economic Analysis – In House

19

Economic Analysis – External Lab

Impacts

Economic Impacts

- Selling compost provides funding for more projects in NAU facilities.
- Local companies and NAU avoid tipping fees from the landfill by bring waste to the compost site.

Social Impacts

- Alternative to throwing out waste.
- Purchase local gardening needs; greater sense of community within NAU and Flagstaff.

Environmental Impacts

- Saves landfill space.
- Eco-friendly safe product.
- Compost being utilized to help grow plants.

Figure 20: Food scraps after emulsifier process

Conclusion

Lab Analysis:

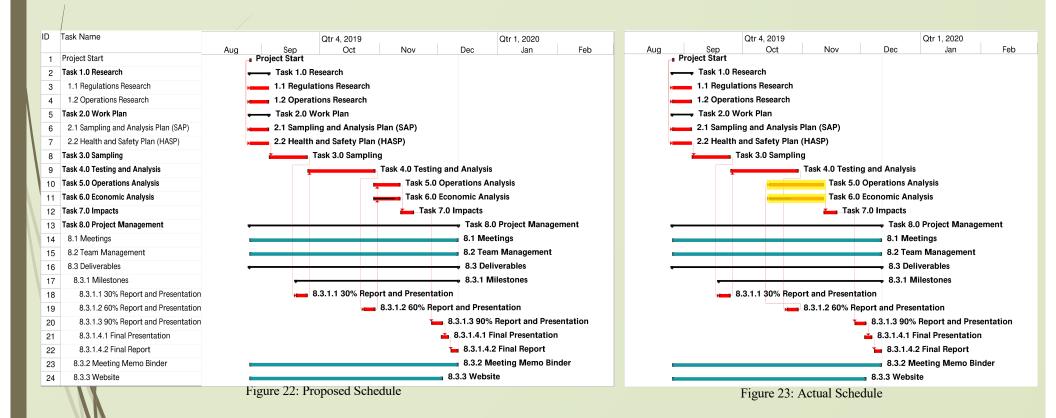
- Testing must follow TMECC for credibility and accuracy.
- For In-House Testing, NAU must follow TMECC.

Economic:

Using the External Lab saves NAU
~\$64K over 20 years and ~\$5,400 a year.

Figure 21: Finished Compost Pile 3; Photo by: Sara Page

Project Management


Table 11: Proposed Staff Hours

Proposed Staffing Hours				
Task	Senior Engineer	Engineer	Lab Tech	
Task 1.0 Research				
1.1 Regulations Research	2	4	8	
1.2 Operations Research	3	7	3	
Task 2.0 Work Plan	2	4	8	
2.1 Sampling and Analysis Plan(SAP)	3	16	15	
2.2 Health and Safety Plan (HASP)	3	22	22	
Task 3.0 Sampling	16	22	20	
Task 4.0 Testing and Analysis	24	40	65	
Task 5.0 Operations Analysis	14	15	4	
Task 6.0 Economics Analysis	22	35	0	
Task 7.0 Impacts	3	15	12	
Task 8.0 Project Management	2	4	3	
8.1 Meetings	3	3	3	
8.2 Team Management	8	9	5	
8.3 Deliverables	7	15	4	
8.3.1 Milestone	6	13	3	
8.3.1.1 30% Report and Presentation	3	7	2	
8.3.1.2 60% Report and Presentation	3	8	2	
8.3.1.3 90% Report and Presentation	3	6	1	
8.3.1.4 Final Presentation	1	1	1	
8.3.1.4 Final Report	1	2	1	
8.3.2 Meeting Memo Binder	0	8	8	
8.3.3 Website	3	10	0	
Total		588		

Table 12: Actual Staff Hours

Actual Staffing Hours					
Task	Senior Engineer	Engineer	Lab Tech		
Task 1.0 Research					
1.1 Regulations Research	0	6	0		
1.2 Operations Research	0	10	0		
Task 2.0 Work Plan	2	14	3		
2.1 Sampling and Analysis Plan(SAP)	5	9	0		
2.2 Health and Safety Plan (HASP)	1	3	3		
Task 3.0 Sampling	1	6	1		
Task 4.0 Testing and Analysis	3	4	78		
Task 5.0 Operations Analysis	1.5	8	0		
Task 6.0 Economics Analysis	5	13	4.5		
Task 7.0 Impacts	1	2	0		
Task 8.0 Project Management	0	0	0		
8.1 Meetings	8.5	28.5	25		
8.2 Team Management	9	28	16.5		
8.3 Deliverables	0	0	0		
8.3.1 Milestone	0	0	0		
8.3.1.1 30% Report and Presentation	4	7	0		
8.3.1.2 60% Report and Presentation	7	17	2		
8.3.1.3 90% Report and Presentation	10	20	8		
8.3.1.4 Final Presentation	9	11	6		
8.3.1.4 Final Report	10	12	5		
8.3.2 Meeting Memo Binder	4	18	0		
8.3.3 Website	0	12	0		
Total	4	61.5			

Schedule – Proposed vs Actual

Budget - Proposed vs Actual

Table 13: Proposed Cost of Engineering Services

Table 14: Actual Cost of Engineering Services

Proposed Cost of Engine	ering Serv	vices	5			
1.0 Personnel						
Classification	Hours	Rate	, \$/hr	Cost \$		
SENG	123	200		24600		
ENG	241	74		17834		
LAB	224	63		14112		
Total Personnel	588	N/A		56546		
2.0 Supplies	-					
ltem	Cost/unit \$	Unit	Quantity	Cost \$		
NAU Lab Rental	100	120	1	12000		
E.coli Broth Glass Ampules, pk/20	56	1	20	56		
m-ColiBlue24 Broth, Plastic Ampules, PK/50	130	1	50	130		
Total Organic Carbon (TOC) Reagent Set, HR	489	1	1	489		
Nitrogen-Ammonia Standard Solution, 50 mg/L as NH3-N, pk/20 - 2 mL PourRite™ Ampules	54	1	20	54		
NitriVer® 3 Nitrite Reagent Powder PIllows, 10 mL, pk/100	43	1	100	43		
Nitrate TNTplus Vial Test, LR (0.2-13.5 ma/L NO3-N)	47	1	1	47		
Phosphorus (Reactive and Total) TNTplus Vial Test, LR (0.15 to 4.50 mg/L PO4)	59	1	1	59		
Potassium Reagent Set	210	1	1	210		
Salmonella EPA Test Broth pk/15	108	1	15	108		
Total Supplies		\$1	3,196			
Total	\$69,742					
		<u>,</u> ,				

1.0 Personnel							
Classification	Hours	Rate, \$/hr		Cost \$			
SENG	81	200		16200			
ENG	228.5	74		16909			
LAB	152	63		9576	9576		
Total Personnel	461.5	N/A		42685	42685		
2.0 Supplies							
ltem	Cost/unit \$	Unit	Quar	Quantity			
NAU Lab Rental	100	120	1		12000		
Buffered Peptone Water	89.9	1	1	1			
Lamp, Ultraviolet, Portable	78.69	1	1		79		
EC/MUG without Durham Tubes, Package of 15	33.2	1	1	1			
Lauryl Tryptose Brother MPN Tubes, Concentrated, pk/15	32.75	1	1		33		
Ion Selective Electrode for Ammonia	884	1	1		884		
Total Supplies		\$13,119					
Total		\$55,804					

References

- P. Pfeifer, M. Gallo and B. Marbury, "NAU Composting Pilot Study Research Report, 2011-2012", Cvcompost.com, 2013. [Online]. Available: https://www.cvcompost.com/NAU-Compost-Research-Project.pdf. [Accessed: 14- Feb- 2019].
- [2] "INTERPRETING WASTE & COMPOST TESTS", WOODS END RESEARCH LABORATORY, vol. 2, no. 1, pp. 1-6, 2005. Available: https://woodsend.com/pdf-files/compost.pdf. [Accessed 26 January 2019].
- [3] N. Gromicko, "Compost Pile Hazards InterNACHI", Nachi.org, 2019. [Online]. Available: https://www.nachi.org/compost-pilehazards.htm. [Accessed: 14- Feb- 2019].
- [4] 'Test Methods of the Examination of Composting and Compost', Compostingcouncil.org, 2001. [Online]. Available: https://compostingcouncil.org/wp-content/plugins/wp-pdfupload/pdf/34/TMECC%20Introduction%20and%20Contents.pdf. [Accessed: 14- Mar- 2019].
- [5] "Compost Sampling and Mailing Procedure (Penn State College of Agricultural Sciences)", Compost Sampling and Mailing Procedure (Penn State College of Agricultural Sciences), 2019. [Online]. Available: https://agsci.psu.edu/aasl/composttesting/sampling-and-mailing-procedure. [Accessed: 29- Aug- 2019].
- [6] "8.0 Sample Handling and Custody", QA Handbook, vol. 2, no. 1, 2008. [Accessed 29 August 2019].
- [7] HASP Template. EPA, 2019.
- [8] P. Capps, "Soil Control Lab NAU Compost Analysis", Soil Control Lab, vol. 1, 2019. [Accessed 20 October 2019].
- [9] "TITLE 18. Environmental Quality Chapter 13. Department of Environmental Quality Solid Waste Management", Apps.azsos.gov, 2017. [Online]. Available: https://apps.azsos.gov/public_services/Title_18/18-13.pdf. [Accessed: 6 November 2019].
- [10] "eCFR Code of Federal Regulations", Ecfr.gov, 2018. [Online]. Available: https://www.ecfr.gov/cgi-bin/textidx?SID=144bf9fc2ff97709607d1b4db200fb35&mc=true&node=pt40.32.503&rgn=div5. [Accessed: 6 November 2019].
- [11] Chapter 24.09 COMPOST QUALITY REGULATIONS", Codepublishing.com, 2018. [Online]. Available: https://www.codepublishing.com/WA/WhatcomCounty/html/WhatcomCounty24/WhatcomCounty2409.html. [Accessed: 6 November 2019].
- [12] "Control Laboratories: Compost Testing: Final Product." [Online]. Available: http://www.controllabs.com/final.htm#finish. [Accessed: 02-Dec-2019]

<u>Questions?</u>